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INTRODUCTION 

 

 

Cystic fibrosis (CF) is a progressive genetic disorder 
caused by mutations in the CFTR gene, leading to thick 
mucus production that obstructs airways and impairs 
digestion. This results in recurrent respiratory infections, 
lung damage, and malabsorption of nutrients, often causing 
malnutrition. Advances in CF treatment include CFTR 
modulator therapies (e.g., ivacaftor, lumacaftor/ivacaftor, 
tezacaftor/ivacaftor, and elexacaftor/tezacaftor/ivacaftor), 
which improve lung function and quality of life by 
targeting the underlying defect [1–5].  

 
 

Nanotechnology offers promising solutions through targeted 
drug delivery systems, facilitating precise administration of 
CFTR modulators, mucus-clearing enzymes, and gene-
editing tools, enhancing efficacy and minimizing side effects 
[4,6]. Additional interventions like airway clearance 
techniques, antibiotics, nutritional support, and lung 
transplantation further optimise CF management. Emerging 
approaches, including personalised medicine and gene-
editing technologies, aim to address individual genetic 
variations, paving the way for more effective and holistic 
treatments [5–6]. 

 

ABSTRACT 
Cystic fibrosis (CF) is a life-threatening autosomal recessive disorder caused by mutations in the cystic fibrosis 
transmembrane conductance regulator (CFTR) gene. These genetic alterations impair chloride and bicarbonate ion 
transport across epithelial surfaces, resulting in thick, sticky mucus that accumulates in the lungs, pancreas, and 
other organs. The consequences include recurrent respiratory infections, progressive lung damage, and nutritional 
deficiencies, making CF a complex multisystem disease requiring lifelong management. Recent decades have 
witnessed major advancements in CF therapy. The development of CFTR modulators, such as ivacaftor and triple-
combination regimens (elexacaftor/tezacaftor/ivacaftor), has revolutionised care by directly targeting the underlying 
molecular defect rather than just managing symptoms. These therapies have demonstrated improvements in lung 
function, quality of life, and life expectancy, marking a paradigm shift in treatment. In parallel, nanotechnology has 
emerged as a powerful tool for drug delivery, enabling nanoparticles to enhance drug stability, improve 
bioavailability, and deliver therapies more precisely to affected tissues, thereby minimising systemic side effects. 
Cutting-edge genetic approaches, particularly CRISPR-Cas9–based genome editing, hold promise for correcting 
CFTR mutations at their source. Although still experimental, these strategies could provide long-term or even 
curative solutions. Alongside pharmacological and genetic interventions, epidemiological research and improved 
diagnostic techniques are shaping early detection and personalised treatment plans.  
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EPIDEMEOLOGY 
 
Cystic fibrosis (CF) prevalence varies globally, with rates 
of 1 in 2000-3000 in Europe, where F508del mutation 
prevalence ranges from 100% in the Faroe Islands to 20% 
in Turkey. North America reports 1 in 3500 cases, with 
79.7% involving 10 common CFTR mutations. In Latin 
America, incidence ranges from 1 in 3900 to 1 in 8500, 
with F508del mutation rates of 59% in Argentina and 29% 
in Chile. In Africa and the Middle East, CF prevalence 
ranges from 1 in 2560 to 1 in 15,876, influenced by 
ethnicity and consanguinity. Asia shows lower rates, from 
1 in 10,000 in the UK to 1 in 100,000-350,000 in Japan, 
with F508del mutation rates of 60% in Pakistan, 20% in 
India, and 10% in Japan. Limited Indian studies estimate 
prevalence between 1 in 10,000 and 1 in 50,000, with 
chronic infections as a primary mortality cause. A 2014 
study noted life expectancy below 15 years in low-resource 
settings like India, though improvements are likely due to 
recent advances. Further research is essential to clarify 
Indian CF prevalence and life expectancy [7–15].  
 
ETIOLOGY AND RISK FACTORS 
 
Cystic fibrosis (CF) is caused by mutations in the CFTR 
gene on chromosome 7, with over 1,700 identified 
variations. The most common, ΔF508, accounts for ~70% 
of cases and involves the deletion of three nucleotides, 
leading to defective chloride channels and impaired CFTR 
protein function [11,12]. Risk factors include a family 
history of CF, European ancestry (especially Northern 
European), advanced maternal age (>35), previous CF 
pregnancies, and environmental exposures like tobacco 
smoke or respiratory infections. While CF is genetic, these 
factors can influence disease severity. CF is slightly more 
prevalent in females than males [11,12]. 
 
PATHOPHYSIOLOGY 
 
CFTR is a membrane protein that regulates chloride and 
bicarbonate ion transport in epithelial tissues, enabling 
passive ion flow driven by ATP hydrolysis [13–15]. 
Located in the apical membranes of exocrine cells, CFTR 
facilitates ion and water secretion, crucial for maintaining 
mucociliary clearance and fluid balance in respiratory and 
digestive systems [16]. Dysfunctional CFTR impairs 
hydration, leading to mucus buildup, ciliary dysfunction, 
and tissue damage in organs like the lungs, pancreas, and 
bile ducts, disrupting glandular secretion and causing 
obstruction.[17] 
Abnormal CFTR protein disrupts ion transport, reducing 
chloride secretion and increasing sodium absorption, 
leading to dehydrated protective fluid and thick, sticky 
mucus that blocks airways [18]. This impairs cilia function,  
hinders mucus clearance, and promotes bacterial growth, 
especially Pseudomonas aeruginosa, causing chronic 
respiratory infections and inflammation, which damage 
lung tissue and reduce lung function [19].  
 
 
 

 
 
 
 
 
CF also causes pancreatic insufficiency, reducing enzyme 
secretion and impairing nutrient absorption, leading to 
malnutrition [2,18]. Gastrointestinal effects include bile 
duct blockages causing liver disease and thickened 
secretions causing intestinal obstruction [18]. 

 

 
 
Figure 1: Diagram representing Normal Airway of lungs 
and Airway with Cystic fibrosis 
 
CLINICAL MANIFESTATIONS 
 
Cystic fibrosis (CF) causes persistent cough, frequent lung 
infections, shortness of breath, wheezing, poor growth, 
malnutrition, vitamin deficiencies, greasy stools, abdominal 
pain, and bloating. It results in pancreatic insufficiency, liver 
disease, diabetes, delayed puberty, infertility in males, 
osteoporosis, and sinus issues like nasal polyps and chronic 
sinus infections. Severe complications include respiratory 
failure, Cor pulmonale, pneumothorax, rectal prolapse, 
gallstones, and heat intolerance. CFTR protein defects 
disrupt ion transport, leading to thick mucus, airway 
blockage, bacterial growth, chronic inflammation, and lung 
damage. Reduced enzyme secretion and bile duct blockages 
cause nutrient malabsorption, intestinal obstruction, and liver 
disease [1,2,6]. 
 
                       

 
 
Figure 2: This figure is a mind map illustrating the effects of 
cystic fibrosis (CF) on different body systems 
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DIAGNOSIS 
 
Diagnostic evaluations for cystic fibrosis (CF) include the 
sweat test, which measures elevated sweat chloride levels due 
to impaired CFTR channels, following standardized methods 
involving pilocarpine iontophoresis and chloride analysis 
[20–23]. Newborn screening uses immunoreactive 
trypsinogen (IRT) assays to detect pancreatic injury, 
requiring confirmation for positive cases and early treatment  
at specialised centres [3,20,24,25]. The R117H mutation, 
often identified in newborn screenings, has uncertain clinical 
significance due to asymptomatic cases [20,26]. The beta-
adrenergic sweat test assesses CFTR function by analysing  
CFTR-dependent and independent sweat secretion 
components [20,27]. 
 
MANAGEMENT OF CYSTIC FIBROSIS 
 
Pharmacological treatment for cystic fibrosis (CF) includes 
bronchodilators to widen airways and improve airflow, short- 
and long-acting agents being key options [28–30]. Mucolytic 
agents, such as dornase alfa, reduce mucus thickness and 
enhance clearance [31]. Antibiotics target infections, with 
inhaled, oral, or specific agents addressing bacteria like 
Pseudomonas aeruginosa [32–35]. Pancreatic enzyme 
replacement therapy (PERT) assists in digestion by 
supplementing enzymes for fats, proteins, and carbohydrates 
[36,37]. Anti-inflammatory drugs, including corticosteroids, 
reduce airway inflammation and prevent lung damage 
[38,39]. 
Non-pharmacological strategies include nutritional support 
with high-calorie, high-fat diets and micronutrient 
supplementation to address deficiencies in vitamins (A, D, E, 
K) and minerals like calcium and zinc [40–46]. Salt 
supplementation compensates for excessive salt loss through 
sweat [47]. Exercise improves lung function, muscle 
strength, and mucus clearance [49]. Airway clearance 
techniques (ACTs) use methods like chest physiotherapy, 
vibration vests, and breathing exercises to remove mucus 
[50]. In end-stage CF, lung transplantation is a life-extending 
option for those with severe lung damage unresponsive to 
other treatments [59]. Regular monitoring ensures 
personalized care and optimized outcomes. 
 
CFTR MODULATOR THERAPY 
 
CFTR modulator therapy is a novel approach in cystic 
fibrosis (CF) management, targeting the dysfunctional CFTR 
protein responsible for chloride and fluid homeostasis. By 
improving CFTR function, these therapies address the root 
cause of CF [2,11,51,52]. There are several classes of CFTR 
modulators, each tailored to specific mutations. Potentiators 
enhance intrinsic CFTR channel activity, while correctors 
increase functional CFTR protein at the cell surface, 
improving chloride and fluid conductance [54]. Approved 
therapies target mutations such as G551D, F508del, and 
others, with eligibility determined by genetic testing and 
patient-specific factors [53–55,58]. CFTR modulators 
significantly enhance pulmonary function, reduce respiratory 
exacerbations, and improve weight gain and nutritional 
status, leading to better quality of life for CF patients [56,57]. 
 

 
 
 
 
Ongoing research aims to develop therapies for broader 
mutation coverage, further advancing CF treatment options 
[54], see figure 3. 
 
 

Figure 3: A simplified diagram illustrating how mutations in 
CFTR contribute to cystic fibrosis; (A) CFTR functions 
normally without any mutations, (B) Mutations belonging to 
Class I and VII, (C) Mutations classified as Class II, (D) 
Mutations falling under classes III and IV, (E) Class V 
mutation and (F) Class VI mutations [84]. 
 
TRIPLE COMBINATION 
THERPY/TRIKAFTA/KAFTRIO- 
 
Trikafta, a combination of elexacaftor, tezacaftor, and 
ivacaftor, is a targeted therapy for CF patients with specific 
CFTR mutations, particularly those with at least one F508del 
mutation. It enhances CFTR protein function by improving 
chloride ion transport across cell membranes, alleviating the 
molecular pathophysiology of CF. Trikafta improves 
pulmonary function (evidenced by increased FEV1), reduces 
mucus viscosity to enhance mucociliary clearance, and 
supports nutrient absorption, addressing weight gain and 
improving overall clinical outcomes.[23]  
 
NANOTECHNOLOGY IN CYSTIC FIBROSIS 
 
Nanotechnology offers innovative strategies for enhancing 
the treatment of cystic fibrosis (CF) by enabling targeted drug 
delivery, advanced diagnostics, and gene therapy. 
Nanoparticles are engineered to deliver medications directly 
to the lungs, bypassing mucus barriers and enabling 
controlled or sustained drug release. This approach enhances 
therapeutic efficacy while minimizing systemic side effects. 
Liposomal nanoparticles and dry powder formulations have 
been developed for delivering antibiotics, mucolytic agents, 
and bronchodilators to the respiratory system, improving 
drug targeting and patient adherence. Nanofiber-based 
systems further ensure sustained therapeutic effects through 
controlled drug release [60–70]. Nanotechnology also 
advances gene therapy by providing non-viral nanoparticles 
as carriers for functional CFTR genes. These nanoparticles 
protect and deliver genetic material to airway cells, aiming to 
restore CFTR protein production and chloride ion transport.  
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Ongoing research and clinical trials are optimizing delivery 
methods and evaluating the safety and efficacy of gene 
therapy to address CF's root cause [2,12,71–74]. 
Nanosensors, or nanoprobes, enable early disease detection, 
real-time monitoring of treatment response, and assessment 
of CF progression. They identify CF-specific biomarkers in 
fluids like sputum or sweat, aiding in personalized treatment 
plans and early interventions. Surface nanocoatings on 
medical devices prevent bacterial colonization and biofilm 
formation, reducing infection risks. Additionally, 
nanotechnology contributes to personalized medicine by 
tailoring therapies based on an individual's genetic profile 
and disease characteristics, further improving outcomes and 
minimizing adverse effects [63,65,70,75–77]. 
 
CRISPR-Cas9  
 
CRISPR-Cas9 is a powerful genome-editing tool derived 
from the bacterial immune system. CRISPR sequences act as 
a genetic memory of past viral infections, producing guide 
RNAs (gRNAs) that direct the Cas9 enzyme to specific DNA 
sequences, leading to targeted cleavage. Cas9, functioning as 
molecular scissors, introduces precise DNA cuts, allowing 
cellular repair mechanisms to correct or modify the DNA 
sequence [78,79]. In cystic fibrosis (CF), CRISPR-Cas9 
targets disease-causing mutations in the CFTR gene, such as 
ΔF508. The system is programmed to recognize and bind to 
specific mutated regions within the gene. Cas9 then induces 
a double-strand break (DSB) at the target site, triggering the 
cell's natural DNA repair mechanisms. The homology-
directed repair (HDR) pathway is preferred for CFTR gene 
correction, as it enables the accurate insertion of a corrected 
DNA sequence. This repair restores normal CFTR protein 
function, facilitating proper ion transport across cell 
membranes and addressing the root cause of CF. By 
correcting the genetic defect, CRISPR-Cas9 holds significant 
potential to alleviate CF symptoms and improve patient 
outcomes as shown in the figure 4. [80–83] 
 
      

 
Fig 4: This figure is illustrating the CRISPR-Cas9 Gene 
Editing Process for the CFTR Gene, specifically detailing 
the steps involved in correcting mutations in the CFTR gene 
associated with Cystic Fibrosis. 
 
 
 
 
 

 
 
 
 
 
DISCUSSION 
 
Cystic fibrosis represents a significant global health 
challenge, with notable disparities in prevalence, diagnosis, 
and outcomes across regions. Despite being primarily 
prevalent among Caucasians, emerging studies from Asia  
and Africa indicate an evolving epidemiological landscape. 
This review underscores the transformative role of CFTR 
modulators, such as Trikafta, in altering the disease trajectory 
by directly targeting defective ion transport. Furthermore, 
advancements in nanotechnology provide innovative 
solutions for overcoming physiological barriers and 
delivering therapies with unparalleled precision. Gene-
editing technologies, particularly CRISPR-Cas9, hold 
promise for correcting the underlying genetic mutations, 
potentially offering a permanent cure [84]. However, the 
translational gap from research to clinical application 
highlights the need for rigorous safety and efficacy 
evaluations. Additionally, integrating personalized medicine 
into clinical practice remains pivotal for tailoring 
interventions to individual genetic and phenotypic profiles. 
Challenges persist in resource-limited settings where access 
to advanced diagnostic tools and therapies remains 
constrained. Strengthening global health initiatives, fostering 
collaborations, and ensuring equitable distribution of 
emerging treatments are critical for addressing these gaps. 
This discussion emphasizes the importance of 
interdisciplinary research, patient-centered care, and 
proactive public health strategies in transforming the 
landscape of CF management. 
 
CONCLUSION 
 
The advancements in cystic fibrosis research and treatment 
underscore a paradigm shift toward precision medicine and 
targeted interventions. Innovative therapies, such as CFTR 
modulators, nanotechnology-driven drug delivery, and 
CRISPR-Cas9 gene editing, hold the potential to 
significantly improve outcomes and quality of life for CF 
patients. However, addressing disparities in access and 
developing scalable solutions for resource-constrained 
regions are essential. Continued investment in research, 
clinical trials, and healthcare infrastructure will be pivotal in 
translating these innovations into universal standards of care. 
With sustained efforts, the prospect of a cure for cystic 
fibrosis becomes increasingly attainable. 
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